Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Neutrino events from IceCube have recently been associated with multiple astrophysical sources. Interestingly, these likely detections represent three distinct astrophysical source types: active galactic nuclei (AGNs), blazars, and tidal disruption events (TDEs). Here, we compute the expected contributions of AGNs, blazars, and TDEs to the overall cosmic neutrino flux detected by IceCube based on the associated events, IceCube’s sensitivity, and the source types’ astrophysical properties. We find that, despite being the most commonly identified sources, blazars cannot contribute more than 11% of the total flux (90% credible level), consistent with existing limits from stacked searches. On the other hand, we find that either AGNs or TDEs could contribute more than 50% of the total flux (90% credible level), although stacked searches further limit the TDE contribution to ≲30%. We also find that so-far unknown source types contribute at least 10% of the total cosmic flux with a probability of 80%. We assemble a pie chart that shows the most likely fractional contribution of each source type to IceCube’s total neutrino flux.more » « less
-
Abstract The heaviest elements in the universe are synthesized through rapid neutron capture (r-process) in extremely neutron-rich outflows. Neutron star mergers were established as an importantr-process source through the multimessenger observation of GW170817. Collapsars were also proposed as a potentially major source of heavy elements; however, this is difficult to probe through optical observations due to contamination by other emission mechanisms. Here we present observational constraints onr-process nucleosynthesis by collapsars based on radio follow-up observations of nearby long gamma-ray bursts (GRBs). We make the hypothesis that late-time radio emission arises from the collapsar wind ejecta responsible for forgingr-process elements, and consider the constraints that can be set on this scenario using radio observations of a sample of Swift/Burst Alert Telescope GRBs located within 2 Gpc. No radio counterpart was identified in excess of the radio afterglow of the GRBs in our sample. This gives the strictest limit to the collapsarr-process contribution of ≲0.2M⊙for GRB 060505 and GRB 05826, under the models we considered. Our results additionally constrain energy injection by a long-lived neutron star remnant in some of the considered GRBs. While our results are in tension with collapsars being the majority ofr-process production sites, the ejecta mass and velocity profile of collapsar winds, and the emission parameters, are not yet well modeled. As such, our results are currently subject to large uncertainties, but further theoretical work could greatly improve them.more » « less
-
Abstract The Gravitational-Wave Transient Catalog (GWTC) is a collection of short-duration (transient) gravitational-wave signals identified by the LIGO–Virgo–KAGRA Collaboration in gravitational-wave data produced by the eponymous detectors. The catalog provides information about the identified candidates, such as the arrival time and amplitude of the signal and properties of the signal’s source as inferred from the observational data. GWTC is the data release of this dataset, and version 4.0 extends the catalog to include observations made during the first part of the fourth LIGO–Virgo–KAGRA observing run up until 2024 January 31. This Letter marks an introduction to a collection of articles related to this version of the catalog, GWTC-4.0. The collection of articles accompanying the catalog provides documentation of the methods used to analyze the data, summaries of the catalog of events, observational measurements drawn from the population, and detailed discussions of selected candidates.more » « lessFree, publicly-accessible full text available December 9, 2026
-
ABSTRACT The recent discovery of TeV emission from gamma-ray bursts (GRBs) by the MAGIC and H.E.S.S. Cherenkov telescopes confirmed that emission from these transients can extend to very high energies. The TeV energy domain reaches the most sensitive band of the Cherenkov Telescope Array (CTA). This newly anticipated, improved sensitivity will enhance the prospects of gravitational-wave follow-up observations by CTA to probe particle acceleration and high-energy emission from binary black hole and neutron star mergers, and stellar core-collapse events. Here we discuss the implications of TeV emission on the most promising strategies of choice for the gravitational-wave follow-up effort for CTA and Cherenkov telescopes more broadly. We find that TeV emission (i) may allow more than an hour of delay between the gravitational-wave event and the start of CTA observations; (ii) enables the use of CTA’s small size telescopes that have the largest field of view. We characterize the number of pointings needed to find a counterpart. (iii) We compute the annual follow-up time requirements and find that prioritization will be needed. (iv) Even a few telescopes could detect sufficiently nearby counterparts, raising the possibility of adding a handful of small-sized or medium-sized telescopes to the network at diverse geographic locations. (v) The continued operation of VERITAS/H.E.S.S./MAGIC would be a useful compliment to CTA’s follow-up capabilities by increasing the sky area that can be rapidly covered, especially in the United States and Australia, in which the present network of gravitational-wave detectors is more sensitive.more » « less
An official website of the United States government
